A note on essentially left $phi$-contractible Banach algebras
نویسندگان
چکیده مقاله:
In this note, we show that cite[Corollary 3.2]{sad} is not always true. In fact, we characterize essential left $phi$-contractibility of the group algebras in terms of compactness of its related locally compact group. Also, we show that for any compact commutative group $G$, $L^{2}(G)$ is always essentially left $phi$-contractible. We discuss the essential left $phi$-contractibility of some Fourier algebras.
منابع مشابه
phi-Amenable and phi-biflat Banach algebras
In this paper we study the concept of ph-biatness ofa Banach algebra A, where ph is a continuous homomorphism on A.We prove that if ph is a continuous epimorphism on A and A hasa bounded approximate identity and A is ph- biat, then A is ph-amenable. In the case where ph is an isomorphism on A we showthat the ph- amenability of A implies its ph-biatness.
متن کاملThe structure of module contractible Banach algebras
In this paper we study the module contractibility ofBanach algebras and characterize them in terms the conceptssplitting and admissibility of short exact sequences. Also weinvestigate module contractibility of Banach algebras with theconcept of the module diagonal.
متن کاملLeft Jordan derivations on Banach algebras
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
متن کاملphi-amenable and phi-biflat banach algebras
in this paper we study the concept of ph-biatness ofa banach algebra a, where ph is a continuous homomorphism on a.we prove that if ph is a continuous epimorphism on a and a hasa bounded approximate identity and a is ph- biat, then a is ph-amenable. in the case where ph is an isomorphism on a we showthat the ph- amenability of a implies its ph-biatness.
متن کاملLeft derivable or Jordan left derivable mappings on Banach algebras
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
متن کاملthe structure of module contractible banach algebras
in this paper we study the module contractibility ofbanach algebras and characterize them in terms the conceptssplitting and admissibility of short exact sequences. also weinvestigate module contractibility of banach algebras with theconcept of the module diagonal.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 1
صفحات 23- 27
تاریخ انتشار 2020-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023